Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 14: 1337997, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529382

RESUMEN

Background: The large cell neuroendocrine carcinoma (LCNEC) of the urinary bladder is a rare malignancy. With its high aggressiveness and poor prognosis, the disease is often accompanied by metastasis or recurrence. The lack of specific clinical manifestations and imaging features causes considerable challenges for clinical diagnosis and treatment. Case presentation: We report a case of LCNEC of the urinary bladder. The patient was a 79-year-old male admitted to our hospital with recurrent episodes of asymptomatic gross hematuria. Based on the computed tomography (CT) scan findings, our patient presented with a bladder mass displaying invasion into the serosal layer, suggestive of muscle involvement and indicative of malignancy. The patient received a radical cystectomy, and the postoperative pathology confirmed primary, pure LCNEC of the urinary bladder. We gave him 16 cycles of toripalimab immunotherapy. As of follow-up, the patient was alive, and periodic CT reexamination showed no evidence of recurrence. Conclusions: We reviewed domestic and foreign literature and found no explicit treatment protocols exist for the disease. Surgical resection combined with chemotherapy were the most common treatments. Herein, we reported the first case of primary, pure LCNEC of the urinary bladder treated by radical cystectomy combined with pure immunotherapy, achieving sustained remission, which provides a new idea for the immunotherapy and integrative treatment of the disease.

2.
Sci Rep ; 14(1): 2114, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267482

RESUMEN

COVID-19 increased global mortality in 2019. Cystitis became a contributing factor in SARS-CoV-2 and COVID-19 complications. The complex molecular links between cystitis and COVID-19 are unclear. This study investigates COVID-19-associated cystitis (CAC) molecular mechanisms and drug candidates using bioinformatics and systems biology. Obtain the gene expression profiles of IC (GSE11783) and COVID-19 (GSE147507) from the Gene Expression Omnibus (GEO) database. Identified the common differentially expressed genes (DEGs) in both IC and COVID-19, and extracted a number of key genes from this group. Subsequently, conduct Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on the DEGs. Additionally, design a protein-protein interaction (PPI) network, a transcription factor gene regulatory network, a TF miRNA regulatory network, and a gene disease association network using the DEGs. Identify and extract hub genes from the PPI network. Then construct Nomogram diagnostic prediction models based on the hub genes. The DSigDB database was used to forecast many potential molecular medicines that are associated with common DEGs. Assess the precision of hub genes and Nomogram models in diagnosing IC and COVID-19 by employing Receiver Operating Characteristic (ROC) curves. The IC dataset (GSE57560) and the COVID-19 dataset (GSE171110) were selected to validate the models' diagnostic accuracy. A grand total of 198 DEGs that overlapped were found and chosen for further research. FCER1G, ITGAM, LCP2, LILRB2, MNDA, SPI1, and TYROBP were screened as the hub genes. The Nomogram model, built using the seven hub genes, demonstrates significant utility as a diagnostic prediction model for both IC and COVID-19. Multiple potential molecular medicines associated with common DEGs have been discovered. These pathways, hub genes, and models may provide new perspectives for future research into mechanisms and guide personalised and effective therapeutics for IC patients infected with COVID-19.


Asunto(s)
COVID-19 , Cistitis , MicroARNs , Humanos , COVID-19/genética , SARS-CoV-2/genética , Biología Computacional
3.
FEMS Microbiol Lett ; 363(12)2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27190158

RESUMEN

Three putative regulatory genes, namely ttmRI, ttmRII and ttmRIII, which are present in the tetramycin (ttm) biosynthetic gene cluster, were found in Streptomyces ahygroscopicus Disruption of ttmRI, ttmRII or ttmRIII reduced tetramycin production, and their complementation restored production to varying degrees. Gene expression analysis of the wild-type (WT) and mutant strains through reverse transcriptase-polymerase chain reaction (RT-PCR) of the ttm gene cluster showed that the expression levels of most of the biosynthetic genes were reduced in ΔttmRI, ΔttmRII and ΔttmRIII Electrophoretic mobility shift assays demonstrated that TtmRI, TtmRII and TtmRIII bound the promoters of several genes in the ttm gene cluster. This study found that these three proteins are a group of positive regulators that activate the transcription of the ttm gene cluster in S. ahygroscopicus In addition, ΔttmRII had a reduced degree of grey pigmentation. Thus, TtmRII has a pleiotropic regulatory function in the tetramycin biosynthetic pathway and in development.


Asunto(s)
Vías Biosintéticas/genética , Regulación Bacteriana de la Expresión Génica , Genes Reguladores , Macrólidos/metabolismo , Streptomyces/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Familia de Multigenes , Regiones Promotoras Genéticas , Streptomyces/metabolismo
4.
Microb Cell Fact ; 15: 1, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26729212

RESUMEN

BACKGROUND: Isepamicin is a weakly toxic but highly active aminoglycoside antibiotic derivative of gentamicin B. Gentamicin B is a naturally occurring minor component isolated from Micromonospora echinospora. 2'-NH2-containing gentamicin C complex is a dominant compound produced by wild-type M. echinospora; by contrast, 2'-OH-containing gentamicin B is produced as a minor component. However, the biosynthetic pathway of gentamicin B remains unclear. Considering that gentamicin B shares a unique C2' hydroxyl group with kanamycin A, we aimed to design a new biosynthetic pathway of gentamicin B by combining twelve steps of gentamicin biosynthesis and two steps of kanamycin biosynthesis. RESULTS: We blocked the biosynthetic pathway of byproducts and generated a strain overproducing JI-20A, which was used as a precursor of gentamicin B biosynthesis, by disrupting genK and genP. The amount of JI-20A produced in M. echinospora ∆K∆P reached 911 µg/ml, which was 14-fold higher than that of M. echinospora ∆P. The enzymes KanJ and KanK necessary to convert 2'-NH2 into 2'-OH from the kanamycin biosynthetic pathway were heterologously expressed in M. echinospora ΔKΔP to transform JI-20A into gentamicin B. The strain with kanJK under PermE* could produce 80 µg/ml of gentamicin B, which was tenfold higher than that of the wild-type strain. To enhance gentamicin B production, we employed different promoters and gene integration combinations. When a PhrdB promoter was used and kanJ and kanK were integrated in the genome through gene replacement, gentamicin B was generated as the major product with a maximum yield of 880 µg/ml. CONCLUSION: We constructed a new biosynthetic pathway of high-level gentamicin B production; in this pathway, most byproducts were removed. This method also provided novel insights into the biosynthesis of secondary metabolites via the combinatorial biosynthesis.


Asunto(s)
Gentamicinas/metabolismo , Micromonospora/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Micromonospora/genética , Regiones Promotoras Genéticas/genética
5.
J Ind Microbiol Biotechnol ; 41(9): 1383-90, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25031027

RESUMEN

G418, produced by fermentation of Micromonospora echinospora, is an aminoglycoside antibiotic commonly used in genetic selection and maintenance of eukaryotic cells. Besides G418, M. echinospora produces many G418 analogs. As a result, the G418 product always contains impurities such as gentamicin C1, C1a, C2, C2a, gentamicin A and gentamicin X2. These impurities are less potent but more toxic than G418, but the purification of G418 is difficult because it has similar properties to its impurities. G418 is an intermediate in the gentamicin biosynthesis pathway. From G418 the pathway proceeds via successive dehydrogenation and aminotransferation at the C-6' position to generate the gentamicin C complex, but genes responsible for these steps are still obscure. Through disruption of gacJ, which is deduced to encode a C-6' dehydrogenase, the biosynthetic impurities gentamicin C1, C1a, C2 and C2a were all removed, and G418 became the main product of the gacJ disruption strain. These results demonstrated that gacJ is in charge of conversion of the 6'-OH of G418 into 6'-NH2. Disruption of gacJ not only eliminates the impurities seen in the original strain but also improves G418 titers by 15-fold. G418 production was further improved by 26.6 % through traditional random mutagenesis. Through the use of combined traditional and recombinant genetic techniques, we produced a strain from which most impurities were removed and G418 production was improved by 19 fold.


Asunto(s)
Ingeniería Genética , Gentamicinas/biosíntesis , Micromonospora/genética , Micromonospora/metabolismo , Fermentación , Mutagénesis
6.
Virol Sin ; 27(1): 10-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22270802

RESUMEN

Enterovirus 71 (EV71) is a member of the Entero-virus genus of the Picornaviridae family and is the major cause of Hand, foot, and mouth disease (HFMD) in children. Different strains from Gansu were cloned and the P1 protein was sequenced and analysed. Results indicate that there are three kinds of EV71 infections prevalent in Gansu. The VP1 protein from one of these strains, 55F, was expressed. The recombinant protein was expressed with high level and reacted specifically with the EV71 patient antibody, the recombinant protein was also applied to raise antiserum in rabbits and after the fourth injection a high titer of antiserum was detected by ELISA assay. These data are useful for further clarification of prevalent EV71 strains in the north of China at the molecular level and provide a basis for EV71 diagnosis.


Asunto(s)
Proteínas de la Cápside/genética , Enterovirus Humano A/genética , Expresión Génica , Enfermedad de Boca, Mano y Pie/virología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Niño , China , Análisis por Conglomerados , Enterovirus Humano A/aislamiento & purificación , Humanos , Inmunoensayo/métodos , Filogenia , ARN Viral/genética , Conejos , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...